Books  Data Analysis & Modelling  Cartography, Remote Sensing, Image Analysis & GIS 

Geographic Information Analysis

By: David O'Sullivan and David J Unwin

436 pages, diagrams

John Wiley & Sons

Hardback | Apr 2010 | Edition: 2 | #184182 | ISBN-13: 9780470288573
Temporarily out of stock: order now to get this when available Details
NHBS Price: £80.00 $103/€88 approx

About this book

Presents the spatial analytical foundation of geographic information systems, focusing on the universal aspects of spatial data and its analysis.

...a strong text...should be commended with its attention to practical examples... (Progress in Human Geography, Vol.27, No.5, 2003)


Preface.1. Geographic Information Analysis and Spatial Data.Chapter Objectives.1.1 Introduction.1.2 Spatial Data Types.1.3 Scales for Attribute Description.1.4 GIS Analysis, Spatial Data Manipulation, and Spatial Analysis.1.5 Conclusion.Chapter Review.References.2. The Pitfalls and Potential of Spatial Data.Chapter Objectives.2.1 Introduction.2.2 The Bad News: The Pitfalls of Spatial Data.2.3 The Good News: The Potential of Spatial Data.2.4 Preview: The Variogram Cloud and the Semivariogram.Chapter Review.References.3. Fundamentals: Maps as Outcomes of Processes.Chapter Objectives.3.1 Introduction.3.2 Processes and the Patterns They Make.3.3 Predicting the Pattern Generated by a Process.3.4 More Definitions.3.5 Stochastic Processes in Lines, Areas, and Fields.3.6 Conclusion.Chapter Review.References.4. Point Pattern Analysis.Chapter Objectives.4.1 Introduction.4.2 Describing a Point Pattern.4.3 Density-Based Point Pattern Measures.4.4 Distance-Based Point Pattern Measures.4.5 Assessing Point Patterns Statistically.4.6 Two Critiques of Spatial Statistical Analysis.4.7 Conclusion.Chapter Review.References.5. Practical Point Pattern Analysis.Chapter Objectives.5.1 Point Pattern Analysis versus Cluster Detection.5.2 Extensions of Basic Point Pattern Measures.5.3 Using Density and Distance: Proximity Polygons.5.4 Note on Distance Matrices and Point Pattern Analysis.5.5 Conclusion.Chapter Review.References.6. Lines and Networks.Chapter Objectives.6.1 Introduction.6.2 Representing and Storing Linear Entities.6.3 Line Length: More Than Meets the Eye.6.4 Connection in Line Data: Trees and Graphs.6.5 Statistical Analysis of Geographical Line Data.6.6 Conclusion.Chapter Review.References.7. Area Objects and Spatial Autocorrelation.Chapter Objectives.7.1 Introduction.7.2 Types of Area Object.7.3 Geometric Properties of Areas.7.4 Spatial Autocorrelation: Introducing the Joins Count Approach.7.5 Fully Worked Example: The 2000 U.S. Presidential Election.7.6 Other Measures of Spatial Autocorrelation.7.7 Local Indicators of Spatial Association.Chapter Review.References.8. Describing and Analyzing Fields.Chapter Objectives.8.1 Introduction.8.2 Modeling and Storing Field Data.8.3 Spatial Interpolation.8.4 Derived Measures on Surfaces.8.5 Conclusion.Chapter Review.References.9. Knowing the Unknowable: The Statistics of Fields.Chapter Objectives.9.1 Introduction.9.2 Review of Regression.9.3 Regression on Spatial Coordinates: Trend Surface Analysis.9.4 Statistical Approach to Interpolation: Kriging.9.5 Conclusion.Chapter Review.References.10. Putting Maps Together: Map Overlay.Chapter Objectives.10.1 Introduction.10.2 Polygon Overlay and Sieve Mapping.10.3 Problems in Simple Boolean Polygon Overlay.10.4 Toward a General Model: Alternatives to Boolean Overlay.10.5 Conclusion.Chapter Review.References.11. Multivariate Data, Multidimensional Space, and Spatialization.Chapter Objectives.11.1 Introduction.11.2 Multivariate Data and Multidimensional Space.11.3 Distance, Difference, and Similarity.11.4 Cluster Analysis: Identifying Groups of Similar Observations.11.5 Spatialization: Mapping Multivariate Data.11.6 Reducing the Number of Variables: Principal Components Analysis.11.7 Conclusion.Chapter Review.References.12. New Approaches to Spatial Analysis.Chapter Objectives.12.1 Introduction.12.2 Geocomputation.12.3 Spatial Models.12.4 Conclusion.Chapter Review.References.A. The Elements of Statistics.A.1 Introduction.A.2 Describing Data.A.3 Probability Theory.A.4 Processes and Random Variables.A.5 Sampling Distributions and Hypothesis Testing.A.6 Example.Reference.B. Matrices and Matrix Mathematics.B.1 Introduction.B.2 Matrix Basics and Notation.B.3 Simple Mathematics.B.4 Solving Simultaneous Equations Using Matrices.B.5 Matrices, Vectors, and Geometry.Reference.Index.

Write a review

There are currently no reviews for this product. Be the first to review this product!


DAVID O'SULLIVAN, PhD, is Assistant Professor of Geography at The Pennsylvania State University in University Park, Pennsylvania. DAVID J. UNWIN, MPhil, formerly Professor of Geography at Birkbeck College in the University of London, UK, is currently Director of Learning Programmes at UKeUniversities Worldwide. He is also the author of Computer Programming for Geographers (with J. A. Dawson) and coeditor of Visualization in Geographic Information Systems (with Hilary M. Hearnshaw), both published by Wiley.

Bestsellers in this subject

Remote Sensing and GIS for Ecologists

NHBS Price: £34.99 $45/€38 approx

Mastering ArcGIS

NHBS Price: £65.99 $85/€73 approx

Getting Started with Your GPS

Clearance price: £3.13 £12.50 (Save £9.37) $4/€3 approx

Advances in Remote Sensing and GIS Analysis

NHBS Price: £196.00 $253/€215 approx

VAT: GB 407 4846 44
NHBS Ltd is registered in England and Wales: 1875194