To see accurate pricing, please choose your delivery country.
 
 
United States
£ GBP
All Shops

British Wildlife

8 issues per year 84 pages per issue Subscription only

British Wildlife is the leading natural history magazine in the UK, providing essential reading for both enthusiast and professional naturalists and wildlife conservationists. Published eight times a year, British Wildlife bridges the gap between popular writing and scientific literature through a combination of long-form articles, regular columns and reports, book reviews and letters.

Subscriptions from £33 per year

Conservation Land Management

4 issues per year 44 pages per issue Subscription only

Conservation Land Management (CLM) is a quarterly magazine that is widely regarded as essential reading for all who are involved in land management for nature conservation, across the British Isles. CLM includes long-form articles, events listings, publication reviews, new product information and updates, reports of conferences and letters.

Subscriptions from £26 per year
Academic & Professional Books  Reference  Data Analysis & Modelling  Cartography, Remote Sensing, Image Analysis & GIS

Intelligent Positioning GIS-GPS Unification

Out of Print
By: G Taylor and Geoff Blewitt
181 pages, Col & b/w figs, tabs
Intelligent Positioning
Click to have a closer look
  • Intelligent Positioning ISBN: 9780470850039 Hardback Mar 2006 Out of Print #178464
About this book Contents Biography Related titles

About this book

GIS and GPS integration is happening in research and commercial activities worldwide, however, this is the first GIS GPS integration book to look at applications that combine GIS and GPS to provide one solution. It begins by providing readers with technical overviews of GPS and GIS and their integration, and then focuses on a selection of R&D activities in applications ranging from intelligent transport systems to real time location based tourist information systems. It provides overview chapters on GIS, GPS and GIS GPS integration for readers who are less familiar with either system. Based on the authors' own research and development activities in both the UK and the US, it includes case studies in each chapter to illustrate the end product/commercial activities that research can lead to.

Contents

Foreword. Preface. Acknowledgements. List of Abbreviations. Introduction. 1. Do You Really Know Where You Are? 2. How Active Is Your Map? 3. Levels of GPS GIS Integration. 4. Overview of the Book. 1 GIS: An Overview. 1. Introduction. 2. GIS. 2.1. The Basic Idea. 3. Functionality. 3.1. Input. 3.2. Storage. 3.3. Analysis. 3.4. Output. 4. Fundamental Concepts. 4.1. Features. 4.2. Spatial Elements. 4.3. Attribute Information. 5. Spatial and Geographical Data. 5.1. Spatial Referencing. 6. Spatial Data Modelling. 7. Spatial Data Visualization. 8. GIS and the Internet. 9. The Application of GIS. 9.1. Example GIS Applications. 10. Conclusion. 2 GPS: An Introduction. 1. GPS Description. 1.1. The Basic Idea. 1.2. The GPS Segments. 1.3. The GPS Signals. 2. The Pseudorange Observable. 2.1. Code Generation. 2.2. Autocorrelation Technique. 2.3. Pseudorange Observation Equations. 3. Point Positioning Using Pseudorange. 3.1. Least Squares Estimation. 3.2. Error Computation. 4. The Carrier Phase Observable. 4.1. Concepts. 4.2. Carrier Phase Observation Model. 4.3. Differencing Techniques. 5. Relative Positioning Using Carrier Phase. 5.1. Selection of Observations. 5.2. Baseline Solution Using Double Differences. 5.3. Stochastic Model. 6. Introducing High Precision GPS Geodesy. 6.1. High Precision Software. 6.2. Sources of Data and Information. 7. Conclusion. 3 Datum Transformations and Projections. 1. Integration Requirements. 2. Global Reference Systems. 2.1. WGS 84 Cartesian Coordinates. 2.2. International Terrestrial Reference System (ITRS). 2.3. WGS 84 Ellipsoidal Coordinates. 2.4. Cartesian to Ellipsoidal Transformation. 2.5. Ellipsoidal to Cartesian Transformation. 2.6. Relative Coordinates: Cartesian to Topocentric. 2.7. GPS Estimated Errors: Cartesian to Topocentric. 2.8. Dilution of Precision. 3. Regional Reference Systems. 3.1. Regional Ellipsoidal Coordinates. 3.2. Plane Coordinates. 3.3. Converting Latitude and Longitude to UTM. 3.4. Orthometric Height 'Above Sea Level'. 4. Conclusion. 4 Commercial Applications That Integrate GIS and GPS. 1. Introduction. 2. National GIS/GPS Integration Team. 3. GIS and GPS Deformation Monitoring. 4. Location Based Services. 5. Intelligent Transport Systems. 6. Accessible Rural Public Transport (Case Study). 6.1. Overview. 6.2. Integrated Rural Transport. 6.3. Route Tracking System. 6.4. Conclusion. 7. Realtime Passenger Information and Bus Priority System. 8. Precision Farming. 9. Conclusion. 9.1. Shallow Integration. 9.2. Deep Integration. 5 GPS GIS Map Matching: Combined Positioning Solution. 1. Introduction. 2. Map Matching Methodologies. 3. Road Reduction Filter (RRF) Map Matching Algorithm. 3.1. Introduction. 3.2. The Algorithm. 3.3. Determining the Correct Road Centre line. 4. Testing VDGPS. 4.1. Testing Methodology. 4.2. Test Results. 5. Conclusion. 6 Intelligent Map Matching Using 'Mapping Dilution of Precision' (MDOP). 1. Introduction. 2. Least Squares Estimation of Position Error Vector. 3. Quantifying Road Geometry: Mapping Dilution of Precision (MDOP). 4. MDOP for Basic Road Shapes. 5. Testing MDOP. 6. RRF Map Matching Enhancement. 7. Conclusion. 7 The Use of Digital Terrain Models to Aid GPS Vehicle Navigation. 1. Introduction. 2. Digital Terrain Models. 3. Spatial Interpolation of Elevation Data. 3.1. Patchwise Polynomial Interpolation. 3.2. Bicubic Interpolation. 3.3. Biquintic Interpolation. 4. Map Matching and the Road Reduction Filter. 4.1. Road Reduction Filter (RRF). 5. Data Collection and Processing. 5.1. Accuracy of Solution. 6. Results. 6.1. Height Errors Test 1. 6.2. Position Errors Test 1. 7. Results from Test 2 Data with a Subset of Satellites. 7.1. Position Error Test 2. 8. Conclusion. 8 GPS Accuracy Estimation Using Map Matching Techniques: Application to Vehicle Positioning and Odometer Calibration. 1. Introduction. 2. Methodology. 3. Map Matching. 4. Distance Correction Factor. 5. Estimating C. 5.1. Weighting Scheme for wi. 5.2. Implementing the Correction Factor Algorithm. 6. Calibration if GPS Data Is Recently Online. 7. Putting it all Together. 8. Alterations to the Correction Factor Algorithm. 9. Height Aiding. 10. Implementation. 11. Data Processing and Results. 12. Conclusion. Appendix: Algorithms. Algorithm 1 Estimate Location of Bus from Odometer Signal. Algorithm 2 'Distance3d' Function Used by Algorithm 4. Algorithm 3 Update the Value of Ct. Algorithm 4 Update the Value of C. Algorithm 5 Combine C. Algorithm 6 Overview of Events. Modification of Algorithm 6. Bibliography. Index.

Customer Reviews

Biography

George Taylor, University of Glamorgan, UK Geoff Blewitt, University of Nevada, USA
Out of Print
By: G Taylor and Geoff Blewitt
181 pages, Col & b/w figs, tabs
Current promotions
New and Forthcoming BooksNHBS Moth TrapBritish Wildlife MagazineBuyers Guides