Books  Data Analysis & Modelling  Data Analysis & Statistics 

Dynamic Linear Models with R

Handbook / Manual

Series: Use R!

By: Giovanni Petris (Author), Sonia Petrone (Author), Patrizia Campagnoli (Author)

265 pages, b/w illustrations


Paperback | Apr 2009 | #201650 | ISBN-13: 9780387772370
Availability: Usually dispatched within 1-2 weeks Details
NHBS Price: £57.99 $71/€65 approx

About this book

State space models have gained tremendous popularity in recent years in as disparate fields as engineering, economics, genetics and ecology. After a detailed introduction to general state space models, Dynamic Linear Models with R focuses on dynamic linear models, emphasizing their Bayesian analysis. Whenever possible it is shown how to compute estimates and forecasts in closed form; for more complex models, simulation techniques are used.

A final chapter covers modern sequential Monte Carlo algorithms. Dynamic Linear Models with R illustrates all the fundamental steps needed to use dynamic linear models in practice, using R. Many detailed examples based on real data sets are provided to show how to set up a specific model, estimate its parameters, and use it for forecasting. All the code used in Dynamic Linear Models with R is available online. No prior knowledge of Bayesian statistics or time series analysis is required, although familiarity with basic statistics and R is assumed.

"This book is a welcome addition to the series Use R! The text is interspersed with snippets of R code to illustrate the techniques and models and provides the basis of an excellent text for private study."
- International Statistical Review, 2010, 78, 1, 134-159

"Dynamic Linear models With R provides a friendly introduction to the world of dynamic linear models (DLMs) [...] . This book provides the reader with the minimal tools necessary for Bayesian analysis of time series data using DLMs. [...] The main the DLM package in R which provides functions for dynamic linear model creation as well as filtering, smoothing, and forecasting. Therefore, the book can be utilized as a descriptive manual that provides a hybrid practical-theoretical perspective on the purpose of the functions in this extremely useful R package. [...] I'd like to thank these authors for a useful applied Bayesian time series handbook suitable to a graduate statistics course and also to thank the editors of the Use R! series for providing a valuable collection of books for a fantastic open-source software."
- American Statistician, August 2010, Vol. 64, No. 3


- Introduction: Basic notions about Bayesian inference
- Dynamic linear models
- Model classification
- Models with unknown parameters
- Sequential Monte Carlo methods

Write a review

There are currently no reviews for this product. Be the first to review this product!

Bestsellers in this subject

Camera Trapping for Wildlife Research

NHBS Price: £34.99 $43/€39 approx

Choosing and Using Statistics

NHBS Price: £28.50 $35/€32 approx

The R Book

NHBS Price: £65.50 $80/€74 approx

Statistics for Ornithologists

NHBS Price: £11.90 $15/€13 approx

Statistics for Ecologists Using R and Excel

NHBS Price: £29.99 $37/€34 approx