All Shops

Go to British Wildlife

6 issues per year 84 pages per issue Subscription only

British Wildlife is the leading natural history magazine in the UK, providing essential reading for both enthusiast and professional naturalists and wildlife conservationists. Published six times a year, British Wildlife bridges the gap between popular writing and scientific literature through a combination of long-form articles, regular columns and reports, book reviews and letters.

Subscriptions from £25 per year

Conservation Land Management

4 issues per year 44 pages per issue Subscription only

Conservation Land Management (CLM) is a quarterly magazine that is widely regarded as essential reading for all who are involved in land management for nature conservation, across the British Isles. CLM includes long-form articles, events listings, publication reviews, new product information and updates, reports of conferences and letters.

Subscriptions from £18 per year
Academic & Professional Books  Reference  Data Analysis & Modelling  Data Analysis & Statistics

Likelihood, Bayesian and MCMC Methods in Quantitative Genetics

By: D Sorensen and D Gianola
740 pages, Figs
Publisher: Springer-Verlag
Likelihood, Bayesian and MCMC Methods in Quantitative Genetics
Click to have a closer look
Select version
  • Likelihood, Bayesian and MCMC Methods in Quantitative Genetics ISBN: 9780387954400 Hardback Dec 2004 Usually dispatched within 2-3 weeks
    £199.99
    #150519
Selected version: £199.99
About this book Contents Customer reviews Related titles

About this book

Provides the foundations of likelihood, Bayesian and MCMC methods in the context of genetic analysis of quantitative traits.

Contents

I. Review of Probability and Distribution Theory; Probability and Random Variables; Functions of Random Variables.- II. Methods of Inference; An Introduction to Likelihood Inference; Further Topics in Likelihood Inference; An Introduction to Bayesian Inference; Bayesian Analysis of Linear Models; The Prior Distribution and Bayesian Analysis; Bayesian Assessment of Hypotheses and Models; Approximate Inference Via the EM Algorithm.- III. Markov Chaini Monte Carlo Methods; An Overview of Discrete Markov Chains; Markov Chain Monte Carlo; Implementation and Analysis of MCMC Samples.- IV. Applications in Quantitative Genetics; Gaussian and Thick-tailed Linear Models; Threshold Models for Categorical Responses; Bayesian Analysis of Longitudinal Data; Segregation and Quantitative Trait Loci Analysis.

Customer Reviews

By: D Sorensen and D Gianola
740 pages, Figs
Publisher: Springer-Verlag
Media reviews

From the reviews: BIOINFORMATICS "I found the coverage of material to be excellent: well chosen and well written, and I didn't spot a single typographical error!It can serve as a resource book for masters-level taught courses, but will be most useful for PhD students and other researchers who need to fill in the gaps in their knowledge, grasp the intuition behind statistical techniques, models, and algorithms, and find pointers to more extensive treatments. Overall, I find that the authors have succeeded admirably in their goals. I highly recommend this excellent book to any researcher seeking a graduate-level introduction to the modern statistical methods applied in quantitative genetics." "Just one personal sentence as an Introduction: I like the book so much that I have decided to include several parts of it in my own lectures. ! it may be understood more easily by students and researchers that lack a strong background in statistics and mathematics. ! most examples are nicely explained. ! Summing up, I am convinced that this excellent book should be a standard book for researchers and students with a background in genetics who are interested in Bayesian and MCMC methods." (Andreas Ziegler, Metrika, February, 2004) "Both authors ! have made significant contributions to development of statistical methods in quantitative genetics and in particular have been at the forefront of the adoption of MCMC methods for Bayesian analysis, which can be applied to an enormous range of problems ! . their coverage of likelihood methods is both extensive and fair. ! this is a valuable book, in that it presents so much background essential for the subsequent application and merits a much broader market that it is likely to get." (William G. Hill, Genetical Research, Vol. 81, 2003) "The coverage of Bayesian theory is extensive, and includes a discussion of information and entropy, and of the notion 'uninformative' priors, as well as model assessment and model averaging. ! I found the coverage of material to be excellent: well chosen and well written, and I didn't spot a single typographical error. ! the authors have succeeded admirably in their goals. I highly recommend this excellent book to any researcher seeking a graduate-level introduction to the modern statistical methods applied in quantitative genetics." (David Balding, Bioinformatics, July, 2003) "The book is aimed at students and researchers in agriculture, biology and medicine. ! Statisticians will appreciate the attempt to relate biological to statistical parameters. In conclusion the book shows that the authors have a lot of experience with applications of statistics to quantitative genetics. Much more details are given in this book than usual, so it can be considered and recommended for classroom use." (Prof. Dr. W. Urfer, Statistical Papers, Vol. 46 (4), 2005) " [T]he book is worth owning for anyone interested in applying likelihood or Bayesian models, especially realistic models that may require MCMC for implementation." (Journal of the American Statistical Associaton)

Current promotions
Backlist BargainsThe Mammal SocietyOrder your free copy of our 2018 equipment catalogueBritish Wildlife