All Shops

Go to British Wildlife

6 issues per year 84 pages per issue Subscription only

British Wildlife is the leading natural history magazine in the UK, providing essential reading for both enthusiast and professional naturalists and wildlife conservationists. Published six times a year, British Wildlife bridges the gap between popular writing and scientific literature through a combination of long-form articles, regular columns and reports, book reviews and letters.

Subscriptions from £25 per year

Conservation Land Management

4 issues per year 44 pages per issue Subscription only

Conservation Land Management (CLM) is a quarterly magazine that is widely regarded as essential reading for all who are involved in land management for nature conservation, across the British Isles. CLM includes long-form articles, events listings, publication reviews, new product information and updates, reports of conferences and letters.

Subscriptions from £18 per year
Academic & Professional Books  Reference  Physical Sciences  Chemistry

The Properties of Gases and Liquids

By: Bruce E Poling, John M Prausnitz and John O'Connell
Publisher: McGraw Hill
The Properties of Gases and Liquids
Click to have a closer look
Select version
  • The Properties of Gases and Liquids ISBN: 9780071189712 Edition: 5 Paperback Dec 2001 Usually dispatched within 5 days
    £54.99
    #171874
  • The Properties of Gases and Liquids ISBN: 9780070116825 Hardback Dec 2000 Usually dispatched within 5 days
    £68.99
    #171880
Selected version: £54.99
About this book Contents Customer reviews Biography Related titles

About this book

Updating their hefty reference approximately every decade since 1958, chemical engineers Poling (U. of Toledo), John M. Prausnitz (U. of California-Berkeley), and John P. O'Connell (U. of Virginia) describe and critically review various estimation procedures for a limited number of properties of gases and liquids. Among those properties are critical and other pure component properties; pressure-volume- temperature relationships and thermodynamic properties of pure components and mixtures; vapor pressures and phase-change enthalpies; standard enthalpies of formation; standard Gibbs energy of formation; heat capacity; surface tension; viscosity; thermal conductivity; diffusion coefficients; and, phase equilibria. They compare most of the estimated properties to experimental findings to indicate reliability, and illustrate most methods with examples.

Contents

Chapter 1: The Estimation of Physical Properties. Chapter 2: Pure Component Constants. Chapter 3: Thermodynamic Properties of Ideal Gases. Chapter 4: Pressure-Volume-Temperature Relationships of Pure Gases and Liquids. Chapter 5: Pressure-Volume-Temperature Relationships of Mixtures. Chapter 6: Thermodynamic Properties of Pure Components and Mixtures. Chapter 7: Vapor Pressures and Enthalpies of Vaporization of Pure Fluids. Chapter 8: Fluid Phase Equilibria in Multicomponent Systems. Chapter 9: Viscosity. Chapter 10: Thermal Conductivity. Chapter 11: Diffusion Coefficients. Chapter 12: Surface Tension.

Customer Reviews

Biography

Bruce E. Poling is professor of chemical engineering and associate dean of engineering at the University of Toledo (Ohio). He has taught and conducted research for over 30 years in the areas of thermodynamics, physical properties, and process design. John M. Prausnitz is professor of chemical engineering at the University of California at Berkeley. He has extensive physical property experience as a consultant on petroleum, natural gas, petrochemical, cryogenic, and polymeric processes. He is a member of the National Academy of Sciences and the National Academy of Engineering. John P. O'Connell is the Harry Douglas Forsythe Professor of Chemical Engineering at the University of Virginia. He has 35 years of experience in teaching, research, and consulting in physical properties and process design.
By: Bruce E Poling, John M Prausnitz and John O'Connell
Publisher: McGraw Hill
Media reviews
Ever since the first edition of this work was published in 1958, it has been a "must have" in the reference library of Chemical Engineers, particularly those engaged in process design. It has long been the primary reference for anyone who must estimate physical or thermodynamic properties required for equipment design knowing little more than the chemical formula of the materials to be handled. The main value of this book over a simple bibliography that can now be generated by a computer search is that the authors continue the practice started in the first edition of publishing tables comparing the results of using the various estimation methods to each other and experimental data when available and then make recommendations as to which method seems to work best under various conditions. The need for regular updating was succintly stated by Reid and Sherwood in their Preface to the second edition in 1966 when they commented that the half life of estimation correlations seemed to be about four years. Although there are now more fundamentally based properties estimation methods than there were then, the authors note in their Preface to the new edition that "...most estimation methods rely heavily on empiricism..." Thus the need for periodic updating of this work continues. Space does not permit listing chapter by chapter the significant differences from the previous edition, but they are substantial. The properties data bank in Appendix A has been completed revised. This new edition should be added to the library of anyone who must estimate physical properties of materials to be processed. -- Kunesh, John AIChE Journal 20011201 By L. A. Wenzel, Lehigh University This new edition provides a very thorough and careful presentation of modern methods of estimating the physical properties of gases and liquids. Pure gases, pure liquids, multicomponent mixtures of gases and of liquids, and equilibrium multiphase systems are all considered. In the phase equilibria area, solid-liquid and solid-gas systems are included. Properties considered include vapor pressure, critical properties, boiling and freezing points, PVT (pressure-volume-temperature) properties, thermodynamic properties (viscosity, thermal conductivity, diffusion coefficents, and surface tension). Estimation methods are chosen for their accuracy, range of utility, and the availability of needed input data. Methods that are based on a theoretical model of the system are generally preferred. The emphasis on new work is strong, so that in many cases, old familiar methods are omitted. A very extensive database of properties of pure components is provided in the appendixes. Generally, simplicity has been sacrificed to accuracy, so that these methods will not be as easy for the process engineer to use, as was the case with earlier editions. Still, this is a useful, and possibly even vital book for a practicing process engineer; highly recommended for libraries serving them. Graduate students through professionals. Choice 20010501
Current promotions
Best of Winter 2018Harper CollinsOrder your free copy of our 2018 equipment catalogueBritish Wildlife