To see accurate pricing, please choose your delivery country.
United States
All Shops

British Wildlife

8 issues per year 84 pages per issue Subscription only

British Wildlife is the leading natural history magazine in the UK, providing essential reading for both enthusiast and professional naturalists and wildlife conservationists. Published eight times a year, British Wildlife bridges the gap between popular writing and scientific literature through a combination of long-form articles, regular columns and reports, book reviews and letters.

Subscriptions from £33 per year

Conservation Land Management

4 issues per year 44 pages per issue Subscription only

Conservation Land Management (CLM) is a quarterly magazine that is widely regarded as essential reading for all who are involved in land management for nature conservation, across the British Isles. CLM includes long-form articles, events listings, publication reviews, new product information and updates, reports of conferences and letters.

Subscriptions from £26 per year
Academic & Professional Books  Insects & other Invertebrates  Insects  Termites (Isoptera)

Biology of Termites A Modern Synthesis

By: David Edward Bignell(Editor), Yves Roisin(Editor), Nathan Lo(Editor), Bernard J Crespi(Foreword By)
576 pages, colour & b/w photos, colour & b/w illustrations, tables
Publisher: Springer Nature
Biology of Termites
Click to have a closer look
Select version
  • Biology of Termites ISBN: 9789400794955 Paperback Nov 2014 Not in stock: Usually dispatched within 1-2 weeks
  • Biology of Termites ISBN: 9789048139767 Hardback Oct 2010 Not in stock: Usually dispatched within 1-2 weeks
Selected version: £249.99
About this book Contents Customer reviews Related titles

About this book

Biology of Termites brings together the major advances in termite biology, phylogenetics, social evolution and biogeography since the publication of Termites: Evolution, Sociality, Symbioses, Ecology (2000). The editors have brought together leading experts on termite taxonomy, behaviour, genetics, caste differentiation, physiology, microbiology, mound architecture, biogeography and control.

Strong evolutionary and developmental themes run through the individual chapters, fed by new data streams from molecular sequencing, and for the first time it is possible to compare the social organisation of termites with that of the social Hymenoptera, focusing on caste determination, population genetics, cooperative behaviour, nest hygiene and symbioses with microorganisms. Chapters have been added on termite pheromones, termites as pests of agriculture and on destructive invasive species.


1. An introduction to termites: biology, taxonomy and functional morphology (Paul Eggleton)
1.1. Introduction
1.2. Diversity, taxonomy, classification
1.3. The colony
1.4. The colony as (super)organism
1.5. Reproduction and dispersal: alates
1.6. Worker morphology
1.7. Construction, feeding and tending
1.8. Active defence: soldiers
1.9. Protection, stability, fortification: nests and mounds
1.10. Conclusions

2. Termite phylogenetics and co-cladogenesis with symbionts (Nathan Lo, Paul Eggleton)
2.2. Phylogenetic
2.3. Co-cladogenesis between cockroaches, termites, and their symbionts
2.4. Fossil history and key events leading to the origin of termites
2.5. Taxonomic implications of the phylogenetic position of termites
2.6. Termite phylogeny: morphological character sets
2.7. Phylogenetic and taxonomic relationships among Termites
2.8. Conclusions

3. Evolution and function of endogenous termite cellulases (Nathan Lo, Gaku Tokuda, Hirofumi Watanabe)
3.1. Introduction
3.2. Cellulose and cellulases
3.3. A brief history of cellulose research
3.4. Discovery of endogenous cellulose genes and their evolutionary origins
3.5. Endogenous endoglucanases and i -glucosidase copy number and expression in termites
3.6. Functional significance of endogenous cellulases
3.7. Caste specific production of cellulose genes
3.8. Conclusions

4. Altricial development in wood-feeding cockroaches: the key antecedent of termite eusociality (Christine A Nalepa)
4.1. Introduction
4.2. Altricial development
4.3. Altricial offspring: necessary precedent to eusociality
4.4. Altricial development becomes the norm
4.5. Conclusions

5. Eusocial evolution in termites and Hymenoptera (Kenneth J Howard, Barbara L. Thorne)
5.1. Introduction
5.2. Evolution from subsocial ancestors
5.3. Forms of helpers
5.4. Predisposition for eusociality
5.5. Selective processes promoting eusocial helpers
5.6. Synthesis

6. Social organization and the status of workers in termites (Yves Roisin, Judith Korb)
6.1. Introduction
6.2. Mastotermitidae
6.3. Wood-dwelling termites
6.4. Hodotermitidae
6.5. Rhinotermitidae, Serritermitidae and Termitidae
6.6. Origin and evolution of the worker caste
6.7. Conclusion: what is a worker? References

7. Ecology, behavior and evolution of disease resistance in termites (Rebeca B Rosengaus, James FA Traniello, Mark S Bulmer)
7.1. Introduction
7.2. Phylogeny, eusociality and the evolution of disease resistance in termites
7.3. Termite microbial ecology, disease risk and immunocompetence
7.4. Social behavior and infection control
7.5. Termite life history, genetic diversity and disease resistance
7.6. Disease and colony foundation
7.7. Conclusions

8. Comparative biology of fungus cultivation in termites and ants (Tania Nobre, Corinne Rouland-Lefevre, Duur Aanen)
8.1. Introduction
8.2. Evolutionary history of fungiculture
8.3. Colony foundation and establishment of the fungus garden
8.4. Role of fungal symbiont
8.5. Fungus garden #protection
8.6. Evolutionary stability
8.7. Concluding remarks

9. Molecular basis underlying caste differentiation in termites (Toru Miura, Michael E Scharf)
9.1. Introduction
9.2. A historical view of classic work on case determination and differentiation
9.3. Screening of genes responsible for caste differentiation: gene discovery and genomics
9.4. Investigation of gene functions in termites: functional genomics
9.5. Hormonal regulation of caste differentiation
9.6. Morphogenesis in caste differentiation
9.7. Social regulation of caste ratios
9.8. Sociogenomics in termites
9.9. Conclusions and perspectives

10. Sexual and asexual reproduction in termites (Kenji Matsuura)
10.1. Introduction
10.2. Facultative parthenogenesis in maleless colony Foundation
10.3. Mechanism of termite parthenogenesis
10.4. Asexual queen succession (AQS)
10.5. Parthenogenesis and recessive deleterious genes
10.6. Genetic basis of AQS
10.7. Comparison of AQS systems between termites and ants
10.8. Clues to find new AQS species

11. Pheromones and chemical ecology of dispersal and foraging in termites (Christian Bordereau, Jacques M Pasteels)
11.1. Introduction
11.2. Dispersal
11.3. Foraging
11.4. Pheromonal parsimony
11.5. Conclusions

12. Genetic structure of termite colonies and populations (Edward L Vargo, Claudia Husseneder)
12.1. Introduction
12.2. Genetic tools
12.3. Colony genetic structure
12.4. Population genetic structure
12.5. Phylogeography
12.6. Population genetics of invasive species

13. Termite mound architecture, from function to construction (Judith Korb)
13.1. Introduction
13.2. Function and functional significance of termite mound Architecture
13.2.1. Fungus growing termites
13.2.2. Magnetic termites
13.3. Proximate mechanisms of mound building
13.4. Concluding remarks

14. Morphology, physiology, biochemistry and functional design of the termite gut: an evolutionary Wonderland (David E Bignell)
14.1. Introduction
14.2. Structure and design: new insights
14.3. Physiology
14.4. Biochemistry
14.5. An overarching hypothesis of evolution

15. Diversity, structure and evolution of the termite gut microbial community (Moriya Ohkuma, Andreas Brune)
15.1. Introduction
15.2. Molecular phylogeny and evolution of protists
15.3. Bacterial diversity
15.4. Archaeal diversity
15.5. Comparisons among host termites
15.6. Spatial distributions in lower termites
15.7. Protist-prokaryote associations
15.8. Features of microbial communities in higher termites
15.9. Conclusions and perspective

16. Role of the termite gut microbiota in symbiotic digestion (Andreas Brune, Moriya Ohkuma)
16.1. Introduction
16.2. Digestion of wood polysaccharides
16.3. The anaerobic food web
16.4. Termite guts as gradient systems
16.5. Role of the gut microbiota in nitrogen metabolism
16.6. Digestion of soil organic matter
16.7. Do termites degrade lignin? 16.8. Conclusions

17. Global biogeography of termites: a compilation of sources (David T Jones, Paul Eggleton)
17.1. Introduction
17.2..Termite functional and taxonomic classification
17.3. Exemplar assemblages
17.4. Taxonomic richness
17.5. Comparison of assemblages within biomes: some pre-liminary observations
17.6. Implications of varying assemblage structures for termite mediated decomposition in different biomes
17.7. Conclusions

18. Termites as pests of tropical agriculture (Corinne Rouland-Lefevre)
18.1. Introduction
18.2. Damage to tropical crops
18.3. Chemical control
18.4. Control by non-chemical means
18.5. Biological control
18.6. Conclusions

19. Invasive termites (Theodore A Evans)
19.1. Introduction
19.2. Definitions
19.3. List of invasive species
19.4. Characteristics of invasive species
19.5. Invaded habitats
19.6. Source habitats of invasive species
19.7. Future invasions?

Customer Reviews

By: David Edward Bignell(Editor), Yves Roisin(Editor), Nathan Lo(Editor), Bernard J Crespi(Foreword By)
576 pages, colour & b/w photos, colour & b/w illustrations, tables
Publisher: Springer Nature
Current promotions
Field Guide SaleNHBS Moth TrapNew and Forthcoming BooksBuyers Guides