All Shops

Go to British Wildlife

6 issues per year 84 pages per issue Subscription only

British Wildlife is the leading natural history magazine in the UK, providing essential reading for both enthusiast and professional naturalists and wildlife conservationists. Published six times a year, British Wildlife bridges the gap between popular writing and scientific literature through a combination of long-form articles, regular columns and reports, book reviews and letters.

Subscriptions from £25 per year

Conservation Land Management

4 issues per year 44 pages per issue Subscription only

Conservation Land Management (CLM) is a quarterly magazine that is widely regarded as essential reading for all who are involved in land management for nature conservation, across the British Isles. CLM includes long-form articles, events listings, publication reviews, new product information and updates, reports of conferences and letters.

Subscriptions from £18 per year
Academic & Professional Books  Botany  Plants & Botany: Biology & Ecology

Mycorrhizal Mediation of Soil Fertility, Structure, and Carbon Storage

By: Nancy Collins Johnson(Editor), Catherine Gehring(Editor), Jan Jansa(Editor)
Publisher: Elsevier
Mycorrhizal Mediation of Soil
Click to have a closer look
Select version
  • Mycorrhizal Mediation of Soil ISBN: 9780128043127 Paperback Nov 2016 Usually dispatched within 1 week
Selected version: £89.99
About this book Contents Customer reviews Biography Related titles

About this book

Mycorrhizal Mediation of Soil: Fertility, Structure, and Carbon Storage offers a better understanding of mycorrhizal mediation that will help inform earth system models and subsequently improve the accuracy of global carbon model predictions. Mycorrhizas transport tremendous quantities of plant-derived carbon below ground and are increasingly recognized for their importance in the creation, structure, and function of soils. Different global carbon models vary widely in their predictions of the dynamics of the terrestrial carbon pool, ranging from a large sink to a large source.

This edited book presents a unique synthesis of the influence of environmental change on mycorrhizas across a wide range of ecosystems, as well as a clear examination of new discoveries and challenges for the future, to inform land management practices that preserve or increase below ground carbon storage.


Chapter 1. Mycorrhizas: At the Interface of Biological, Soil, and Earth Sciences

Section I. Mycorrhizal Mediation of Soil Development
Chapter 2. Mycorrhizal Symbioses and Pedogenesis Throughout Earth's History
Chapter 3. Role of Mycorrhizal Symbiosis in Mineral Weathering and Nutrient Mining from Soil Parent Material
Chapter 4. Mycorrhizal Interactions With Climate, Soil Parent Material, and Topography
Chapter 5. Mycorrhizas Across Successional Gradients

Section II. Mycorrhizal Mediation of Soil Fertility
Chapter 6. Introduction: Perspectives on Mycorrhizas and Soil Fertility
Chapter 7. Fungal and Plant Tools for the Uptake of Nutrients in Arbuscular Mycorrhizas: A Molecular View
Chapter 8. Accessibility of Inorganic and Organic Nutrients for Mycorrhizas
Chapter 9. Mycorrhizas as Nutrient and Energy Pumps of Soil Food Webs: Multitrophic Interactions and Feedbacks
Chapter 10. Implications of Past, Current, and Future Agricultural Practices for Mycorrhiza-Mediated Nutrient Flux
Chapter 11. Integrating Ectomycorrhizas Into Sustainable Management of Temperate Forests
Chapter 12. Mycorrhizal Mediation of Soil Fertility Amidst Nitrogen Eutrophication and Climate Change

Section III. Mycorrhizal Mediation of Soil Structure And Soil-Plant Water Relations
Chapter 13. Introduction: Mycorrhizas and Soil Structure, Moisture, and Salinity
Chapter 14. Mycorrhizas and Soil Aggregation
Chapter 15. Arbuscular Mycorrhizal Fungi and Soil Salinity
Chapter 16. Mycorrhizas, Drought, and Host-Plant Mortality
Chapter 17. Soil Water Retention and Availability as Influenced by Mycorrhizal Symbiosis: Consequences for Individual Plants, Communities, and Ecosystems
Chapter 18. Mycorrhizal Networks and Forest Resilience to Drought

Section IV. Mycorrhizal Mediation of Ecosystem Carbon Fluxes and Soil Carbon Storage
Chapter 19. Introduction: Mycorrhizas and the Carbon Cycle
Chapter 20. Carbon and Energy Sources of Mycorrhizal Fungi: Obligate Symbionts or Latent Saprotrophs?
Chapter 21. Magnitude, Dynamics, and Control of the Carbon Flow to Mycorrhizas
Chapter 22. Trading Carbon Between Arbuscular Mycorrhizal Fungi and Their Hyphae-Associated Microbes
Chapter 23. Immobilization of Carbon in Mycorrhizal Mycelial Biomass and Secretions
Chapter 24. Mycorrhizal Interactions With Saprotrophs and Impact on Soil Carbon Storage
Chapter 25. Biochar-Arbuscular Mycorrhiza Interaction in Temperate Soils
Chapter 26. Integrating Mycorrhizas Into Global Scale Models: A Journey Toward Relevance in the Earth's Climate System

Customer Reviews


Nancy Collins Johnson has been a professor of soil ecology at Northern Arizona University since 1997. She earned a PhD in Ecology and Plant Pathology from the University of Minnesota (with David Tilman) and a MS degree in Botany from the University of Wisconsin. Johnson and her students study interactions among communities of plants and soil organisms in natural and human managed ecosystems throughout the world. They have discovered that mycorrhizas and soil communities are sensitive to global change factors and they are seeking first principles to understand these responses. These studies are important because mycorrhizal symbioses influence plant community composition, soil stability, and belowground carbon storage.

Professor Catherine Gehring works in the department of Biological Sciences and Merriam-Powell Center for Environmental Research at Northern Arizona University The Gehring Lab conducts research to understand the functioning of fungi in natural and managed systems. Of particular interest is how abiotic and biotic factors interact to affect the abundance and community composition of plant-associated fungi and how changes in these parameters then feedback to affect the performance of host plants. Current projects explore the influence of host plant genetics on fungal abundance and diversity; the impact of climate change on interactions among host plants, fungi, and insects; and the belowground mechanisms by which invasive plants may harm native plants.

Jan Jansa studied biology at Charles University in Prague and agricultural sciences at ETH Zurich, where he also obtained PhD in 2002. He also worked at ETH Zurich and the University of Adelaide (with Sally E. Smith). Jansa currently leads the Laboratory of Fungal Biology at the Institute of Microbiology in Prague. His aim is the quantification of the involvement of mycorrhizal symbiosis in the turnover of soil organic matter, fluxes of mineral nutrients such as phosphorus and nitrogen from the soil to plants and carbon from the plants to the soil. Together with his team, he studies the exchange of mineral nutrients for carbon between the symbiotic partners under spatially and temporarily variable conditions, including light deprivation, using a suite of isotopic and molecular techniques.

By: Nancy Collins Johnson(Editor), Catherine Gehring(Editor), Jan Jansa(Editor)
Publisher: Elsevier
Current promotions
Best of Winter 2018Harper CollinsOrder your free copy of our 2018 equipment catalogueBritish Wildlife