All Shops

British Wildlife

8 issues per year 84 pages per issue Subscription only

British Wildlife is the leading natural history magazine in the UK, providing essential reading for both enthusiast and professional naturalists and wildlife conservationists. Published eight times a year, British Wildlife bridges the gap between popular writing and scientific literature through a combination of long-form articles, regular columns and reports, book reviews and letters.

Subscriptions from £40 per year

Conservation Land Management

4 issues per year 44 pages per issue Subscription only

Conservation Land Management (CLM) is a quarterly magazine that is widely regarded as essential reading for all who are involved in land management for nature conservation, across the British Isles. CLM includes long-form articles, events listings, publication reviews, new product information and updates, reports of conferences and letters.

Subscriptions from £18 per year
Academic & Professional Books  Organismal to Molecular Biology  Biochemistry & Molecular Biology

Cellular Mechanotransduction Diverse Perspectives from Molecules to Tissues

By: Mohammad Reza Kaazempur Mofrad(Editor), Roger D Kamm(Editor)
480 pages, 248 colour illustrations, b/w illustrations, 4 tables
Cellular Mechanotransduction
Click to have a closer look
  • Cellular Mechanotransduction ISBN: 9780521895231 Hardback Dec 2009 Usually dispatched within 6 days
Price: £140.00
About this book Contents Customer reviews Biography Related titles

About this book

Mechanotransduction is the term for the ability, first described by 19th-century anatomist Julius Wolff, of living tissues to sense mechanical stress and respond by tissue remodeling. More recently, the scope of mechanotransduction has been expanded to include the sensation of stress, its translation into a biochemical signal, and the sequence of biological responses it produces.

Cellular Mechanotransduction looks at mechanotransduction in a more restricted sense, focusing on the process of stress sensing and transducing a mechanical force into a cascade of biochemical signals. This stress has become increasingly recognized as one of the primary and essential factors controlling biological functions, ultimately affecting the function of the cells, tissues and organs. A primary goal of this broad book is also to help define the new field of mechanomics, which attempts to describe the complete mechanical state of a biological system.


1. Introduction Roger D. Kamm and Mohammad R. K. Mofrad
2. Endothelial mechanotransduction Peter F. Davies and Brian P. Helmke
3. Role of the plasma membrane in endothelial cell mechanosensation of shear stress Peter J. Butler and Shu Chien
4. Mechanotransduction by membrane mediated activation of G protein coupled receptors and G proteins Yan-Liang Zhang, John A. Frangos, and Mirianas Chachisvilis
5. Cellular mechanotransduction: interactions with the extracellular matrix Andrew D. Doyle and Kenneth M. Yamada
6. Role of ion channels in cellular mechanotransduction: lessons from the vascular endothelium Abdul I. Barakat and Andrea Gojova
7. Towards a modular analysis of cell mechano-sensing and transduction: an operations manual for cell mechanics Benjamin J. Dubin-Thaler and Michael P. Sheetz
8. Tensegrity as a mechanism for integrating molecular and cellular mechanotransduction mechanisms Donald E. Ingber
9. Nuclear mechanics and mechanotransduction Shinji Deguchi and Masaaki Sato
10. Microtubule bending and breaking in cellular mechanotransduction Andrew D. Bicek, Dominique Seetapun, and David J. Odde
11. A molecular perspective on mechanotransduction in focal adhesions Seung E. Lee, Roger D. Kamm, and Mohammad R. K. Mofrad
12. Protein conformational change: a molecular basis of mechanotransduction Gang Bao
13. Translating mechanical force into discrete biochemical signal changes: multimodularity imposes unique properties to mechanotransductive proteins Vesa P. Hytönen, Michael L. Smith, and Viola Vogel
14. Mechanotransduction through local autocrine signaling Nikola Kojic and Daniel J. Tschumperlin
15. The interaction between fluid-wall shear stress and solid circumferential strain affects endothelial cell mechanobiology John M. Tarbell
16. Micro- and nanoscale force techniques for mechanotransduction Nathan J. Sniadecki, Wesley R. Legant, and Christopher S. Chen
17. Mechanical regulation of stem cells: implications in tissue remodeling Kyle Kurpinski, Randall R. R. Janairo, Shu Chien, and Song Li
18. Mechanotransduction: role of nuclear pore mechanics and nucleocytoplasmic transport Christopher B. Wolf and Mohammad R. K. Mofrad
19. Summary and outlook Mohammad R. K. Mofrad and Roger D. Kamm

Customer Reviews


Dr Mohammad Reza Kaazempur Mofrad is currently Assistant Professor of Bioengineering at the University of California, Berkeley, where he is also an affiliated faculty member of graduate programs in applied science and technology, biophysics, computational biology and genomics, and bioengineering (UCSF-Berkeley). Dr Mofrad received his B.A.Sc. degree from Sharif University of Technology in Tehran, Iran. After earning M.A.Sc. and Ph.D. degrees from the Universities of Waterloo and Toronto, respectively, he spent two years at MIT and Harvard Medical School/Massachusetts General Hospital as a post-doctoral Fellow. Before joining the faculty at Berkeley, Dr Mofrad was a Principal Research Scientist at MIT for nearly two years. At Berkeley, he has developed and taught several courses, namely Cell Mechanics and Mechanotransduction, Introductory Biomechanics, Molecular Cell Biomechanics, and Biological Transport Phenomena.

Dr Roger D. Kamm has long been interested in biomechanics, beginning with his work in vascular and pulmonary physiology and leading to his more recent work in cell and molecular mechanics in the context of cellular responses to mechanical stress. Dr Kamm has been on the faculty at MIT since receiving his Ph.D. in 1977 and now holds a joint appointment in the Biological Engineering and Mechanical Engineering Departments. He is currently the Chair of the U.S. National Committee on Biomechanics and the World Council on Biomechanics, and he is Director of the Global Enterprise for MicroMechanics and Molecular Medicine. Kamm has a long-standing interest in bioengineering education, directs a NIH-funded biomechanics training program, co-chaired the committee to form MIT's new undergraduate major in biological engineering, and helped to develop MIT's course on molecular, cellular, and tissue biomechanics.

- Roger D. Kamm
- Mohammad R. K. Mofrad
- Peter F. Davies
- Brian P. Helmke
- Peter J. Butler
- Shu Chien
- Yan-Liang Zhang
- John A. Frangos
- Mirianas Chachisvilis
- Andrew D. Doyle
- Kenneth M. Yamada
- Abdul I. Barakat
- Andrea Gojova
- Benjamin J. Dubin-Thaler
- Michael P. Sheetz
- Donald E. Ingber
- Shinji Deguchi
- Masaaki Sato
- Andrew D. Bicek
- Dominique Seetapun
- David J. Odde
- Seung E. Lee
- Gang Bao
- Vesa P. Hytönen
- Michael L. Smith
- Viola Vogel
- Nikola Kojic
- Daniel J. Tschumperlin
- John M. Tarbell
- Nathan J. Sniadecki
- Wesley R. Legant
- Christopher S. Chen
- Kyle Kurpinski
- Randall R. R. Janairo
- Shu Chien
- Song Li
- Christopher B. Wolf

By: Mohammad Reza Kaazempur Mofrad(Editor), Roger D Kamm(Editor)
480 pages, 248 colour illustrations, b/w illustrations, 4 tables
Current promotions
British WildlifeoupNest Box Price List 2020Order your free copy of our 2020 equipment catalogue