To see accurate pricing, please choose your delivery country.
 
 
United States
£ GBP
All Shops
Important Notice for US Customers

British Wildlife

8 issues per year 84 pages per issue Subscription only

British Wildlife is the leading natural history magazine in the UK, providing essential reading for both enthusiast and professional naturalists and wildlife conservationists. Published eight times a year, British Wildlife bridges the gap between popular writing and scientific literature through a combination of long-form articles, regular columns and reports, book reviews and letters.

Subscriptions from £33 per year

Conservation Land Management

4 issues per year 44 pages per issue Subscription only

Conservation Land Management (CLM) is a quarterly magazine that is widely regarded as essential reading for all who are involved in land management for nature conservation, across the British Isles. CLM includes long-form articles, events listings, publication reviews, new product information and updates, reports of conferences and letters.

Subscriptions from £26 per year
Academic & Professional Books  Reference  Data Analysis & Modelling  Modelling

Modeling Life The Mathematics of Biological Systems

By: Alan Garfinkel(Author), Jane Shevtsov(Author), Yina Guo(Author)
445 pages, 299 colour & 54 b/w illustrations, 346 tables
Publisher: Springer Nature
Modeling Life
Click to have a closer look
  • Modeling Life ISBN: 9783319597300 Hardback Oct 2017 Not in stock: Usually dispatched within 1-2 weeks
    £54.99
    #243173
Price: £54.99
About this book Contents Customer reviews Biography Related titles

About this book

Modeling Life develops the mathematical tools essential for students in the life sciences to describe interacting systems and predict their behaviour. From predator-prey populations in an ecosystem to hormone regulation within the body, the natural world abounds in dynamical systems that affect us profoundly. Complex feedback relations and counter-intuitive responses are common in nature; this book develops the quantitative skills needed to explore these interactions.

Differential equations are the natural mathematical tool for quantifying change and are the driving force throughout Modeling Life. The use of Euler's method makes nonlinear examples tractable and accessible to a broad spectrum of early-stage undergraduates, thus providing a practical alternative to the procedural approach of a traditional Calculus curriculum. Tools are developed within numerous, relevant examples, with an emphasis on the construction, evaluation, and interpretation of mathematical models throughout. Encountering these concepts in context, students learn not only quantitative techniques but how to bridge between biological and mathematical ways of thinking.

Examples range broadly, exploring the dynamics of neurons and the immune system, through to population dynamics and the Google PageRank algorithm. Each scenario relies only on an interest in the natural world; no biological expertise is assumed of student or instructor. Building on a single prerequisite of Precalculus, Modeling Life suits a two-quarter sequence for first or second-year undergraduates and meets the mathematical requirements of medical school entry. The later material provides opportunities for more advanced students in both mathematics and life sciences to revisit theoretical knowledge in a rich, real-world framework. In all cases, the focus is clear: how does the math help us understand the science?

Contents

1. Modeling, Change, and Simulation
2. Derivatives and Integrals
3. Equilibrium Behavior
4. Non-Equilibrium Dynamics: Oscillation
5. Chaos
6. Linear Algebra
7. Multivariable Systems

Bibliography
Index

Customer Reviews

Biography

Alan Garfinkel received his undergraduate degree from Cornell in Mathematics and Philosophy,and a PhD from Harvard in Philosophy and Mathematics. After some years of practicing philosophy of science, Garfinkel transitioned to medical research, applying qualitative dynamics to phenomena in medicine and physiology. Along with James Weiss and Zhilin Qu, he studies cardiac arrhythmias from the point of view of nonlinear dynamics.

Jane Shevtsov earned her BS in Ecology, Behavior and Evolution from UCLA, and her PhD in Ecology from the University of Georgia. Her main research interests lie in mathematical models of food webs and ecosystems.

Yina Guo received her PhD from Nankai University in Control Engineering. Her PhD thesis used partial differential equations to explain the branching structure of the lung. Her computer simulations of branching processes were featured on the cover of the Journal of Physiology. She is particularly interested in the use of graphics and visualization techniques in both research and teaching.

By: Alan Garfinkel(Author), Jane Shevtsov(Author), Yina Guo(Author)
445 pages, 299 colour & 54 b/w illustrations, 346 tables
Publisher: Springer Nature
Current promotions
Great GiftsNew and Forthcoming BooksBritish Wildlife Magazine SubscriptionField Guide Sale 2025