All Shops

Go to British Wildlife

6 issues per year 84 pages per issue Subscription only

British Wildlife is the leading natural history magazine in the UK, providing essential reading for both enthusiast and professional naturalists and wildlife conservationists. Published six times a year, British Wildlife bridges the gap between popular writing and scientific literature through a combination of long-form articles, regular columns and reports, book reviews and letters.

Subscriptions from £25 per year

Conservation Land Management

4 issues per year 44 pages per issue Subscription only

Conservation Land Management (CLM) is a quarterly magazine that is widely regarded as essential reading for all who are involved in land management for nature conservation, across the British Isles. CLM includes long-form articles, events listings, publication reviews, new product information and updates, reports of conferences and letters.

Subscriptions from £18 per year
Academic & Professional Books  Reference  Data Analysis & Modelling  Data Analysis & Statistics

Introductory Statistical Inference

Textbook
Edited By: Nitis Mukhopadhyay
Introductory Statistical Inference
Click to have a closer look
Select version
  • Introductory Statistical Inference ISBN: 9781574446135 Hardback Feb 2006 Usually dispatched within 5 days
    £63.99
    #159420
Selected version: £63.99
About this book Contents Customer reviews Related titles

About this book

This gracefully organized text reveals the rigorous theory of probability and statistical inference in the style of a tutorial, using worked examples, exercises, figures, tables, and computer simulations to develop and illustrate concepts. Drills and boxed summaries emphasize and reinforce important ideas and special techniques.

Beginning with a review of the basic concepts and methods in probability theory, moments, and moment generating functions, the author moves to more intricate topics. Introductory Statistical Inference studies multivariate random variables, exponential families of distributions, and standard probability inequalities. It develops the Helmert transformation for normal distributions, introduces the notions of convergence, and spotlights the central limit theorems. Coverage highlights sampling distributions, Basu's theorem, Rao-Blackwellization and the Cramequality. The o provides in-depth coverage of Lehmann-Scheffe theorems, focuses on tests of hypotheses, describes Bayesian methods and the Bayes' estimator, and develops large-sample inference. The author provides a historical context for statistics and statistical discoveries and answers to a majority of the end-of-chapter exercises.

Designed primarily for a one-semester, first-year graduate course in probability and statistical inference, this text serves readers from varied backgrounds, ranging from engineering, economics, agriculture, and bioscience to finance, financial mathematics, operations and information management, and psychology.

Contents

Probability and DistributionsIntroductionAbout SetsAxiomatic Development of ProbabilityConditional Probability and Independent EventsDiscrete Random VariablesContinuous Random VariablesSome Useful DistributionsExercises and ComplementsMoments and Generating FunctionsIntroductionExpectation and VarianceMoments and Moment Generating FunctionDetermination of a Distribution via MGFProbability Generating FunctionExercises and ComplementsMultivariate Random VariablesIntroductionProbability DistributionsCovariances and Correlation CoefficientIndependence of Random VariablesBivariate Normal DistributionCorrelation Coefficient and IndependenceExponential FamilySelected Probability InequalitiesExercises and ComplementsSampling DistributionIntroductionMoment Generating Function ApproachOrder StatisticsTransformationSpecial Sampling DistributionsMultivariate Normal DistributionSelected Reviews in MatricesExercises and ComplementsNotions of ConvergenceIntroductionConvergence in ProbabilityConvergence in DistributionConvergence of Chi-Square, t, and F distributionsExercises and ComplementsSufficiency, Completeness, and AncillarityIntroductionSufficiencyMinimal SufficiencyInformationAncillarityCompletenessExercises and ComplementsPoint EstimationIntroductionMaximum Likelihood EstimatorCriteria to Compare EstimatorsImproved Unbiased Estimators via SufficiencyUniformly Minimum Variance Unbiased EstimatorConsistent EstimatorExercises and ComplementsTests of HypothesesIntroductionError Probabilities and Power FunctionSimple Null vs. Simple AlternativeOne-Sided Composite AlternativeSimple Null vs. Two-Sided AlternativeExercises and ComplementsConfidence IntervalsIntroductionOne-Sample ProblemsTwo-Sample ProblemsExercises and ComplementsBayesian MethodsIntroductionPrior and Posterior DistributionsConjugate PriorPoint EstimationExamples with a Nonconjugate PriorExercises and ComplementsLikelihood Ratio and Other TestsIntroductionOne-Sample LR Tests: NormalTwo-Sample LR Tests: Independent NormalBivariate NormalExercises and ComplementsLarge-Sample MethodsIntroductionMaximum Likelihood EstimationAsymptotic Relative EfficiencyConfidence Intervals and Tests of HypothesesVariance Stabilizing TransformationExercises and ComplementsAbbreviations, Historical Notes, and TablesAbbreviations and NotationsHistorical NotesSelected Statistical TablesReferencesAnswers: Selected ExercisesAuthor IndexSubject Index

Customer Reviews

Textbook
Edited By: Nitis Mukhopadhyay
Current promotions
Best of Winter 2018Harper CollinsOrder your free copy of our 2018 equipment catalogueBritish Wildlife