All Shops

Go to British Wildlife

6 issues per year 84 pages per issue Subscription only

British Wildlife is the leading natural history magazine in the UK, providing essential reading for both enthusiast and professional naturalists and wildlife conservationists. Published six times a year, British Wildlife bridges the gap between popular writing and scientific literature through a combination of long-form articles, regular columns and reports, book reviews and letters.

Subscriptions from £25 per year

Conservation Land Management

4 issues per year 44 pages per issue Subscription only

Conservation Land Management (CLM) is a quarterly magazine that is widely regarded as essential reading for all who are involved in land management for nature conservation, across the British Isles. CLM includes long-form articles, events listings, publication reviews, new product information and updates, reports of conferences and letters.

Subscriptions from £18 per year
Academic & Professional Books  Organismal to Molecular Biology  Biochemistry & Molecular Biology

Physical Biochemistry - Principles and Applications

Textbook
By: D Sheehan
Physical Biochemistry - Principles and Applications
Click to have a closer look
Select version
  • Physical Biochemistry - Principles and Applications ISBN: 9780470856031 Edition: 2 Paperback Mar 2009 Usually dispatched within 4 days
    £42.50
    #158833
Selected version: £42.50
About this book Contents Customer reviews Related titles

About this book

The new edition of this successful textbook explains the basic principles behind the key techniques currently used in the modern biochemical laboratory in a way that is comprehensive and approachable for students who are not physical chemists. It bridges the gap between general biochemistry textbooks and the more specialist books covering individual techniques.

Contents

Preface. Chapter 1 Introduction. 1.1 Special Chemical Requirements of Biomolecules. 1.2 Factors Affecting Analyte Structure and Stability. 1.3 Buffering Systems Used in Biochemistry. 1.4 Quantitation, Units and Data Handling. 1.5 The Worldwide Web as a Resource in Physical Biochemistry. 1.6 Objectives of this Volume. References. Chapter 2 Chromatography. 2.1 Principles of Chromatography. 2.2 Performance Parameters Used in Chromatography. 2.3 Chromatography Equipment. 2.4 Modes of Chromatography. 2.5 Open Column Chromatography. 2.6 High Performance Liquid Chromatography (HPLC). 2.7 Fast Protein Liquid Chromatography. 2.8 Perfusion Chromatography. 2.9 Membrane-Based Chromatography Systems. 2.10 Chromatography of a Sample Protein. References. Chapter 3 Spectroscopic Techniques. 3.1 The Nature of Light. 3.2 The Electromagnetic Spectrum. 3.3 Ultraviolet/Visible Absorption Spectroscopy. 3.4 Fluorescence Spectroscopy. 3.5 Spectroscopic Techniques Using Plane-Polarized Light. 3.6 Infrared Spectroscopy. 3.7 Nuclear Magnetic Resonance (NMR) Spectroscopy. 3.8 Electron Spin Resonance (ESR) Spectroscopy. 3.9 Lasers. 3.10 Surface Plasmon Resonance. References. Chapter 4 Mass Spectrometry. 4.1 Principles of Mass Spectrometry. 4.2 Mass Spectrometry of Proteins/Peptides. 4.3 Interfacing MS with other Methods. 4.4 Uses of Mass Spectrometry in Biochemistry. References. Chapter 5 Electrophoresis. 5.1 Principles of Electrophoresis. 5.2 Nondenaturing Electrophoresis. 5.3 Denaturing Electrophoresis. 5.4 Electrophoresis in DNA Sequencing. 5.5 Isoelectric Focusing (IEF). 5.6 Immunoelectrophoresis. 5.7 Agarose Gel Electrophoresis of Nucleic Acids. 5.8 Pulsed Field Gel Electrophoresis. 5.9 Capillary Electrophoresis. 5.10 Electroblotting Procedures. 5.11 Electroporation. References. Chapter 6 Three-Dimensional Structure Determination of Macromolecules. 6.1 The Protein-Folding Problem. 6.2 Structure Determination by NMR. 6.3 Crystallization of Biomacromolecules. 6.4 X-Ray Diffraction by Crystals. 6.5 Calculation of Electron Density Maps. 6.6 Other Diffraction Methods. 6.7 Comparison of X-Ray Crystallography with Multi-Dimensional NMR. 6.8 Structural Databases. References. Chapter 7 Hydrodynamic Methods. 7.1 Viscosity. 7.2 Sedimentation. 7.3 Methods for Varying Buffer Conditions. 7.4 Flow Cytometry. References. Chapter 8 Biocalorimetry. 8.1 The Main Thermodynamic Parameters. 8.2 Isothermal Titration Calorimetry. 8.3 Differential Scanning Calorimetry. 8.4 Determination of Thermodynamic Parameters by Non-Calorimetric Means. References. Chapter 9 Bioinformatics. 9.1 Overview of Bioinformatics. 9.2 Sequence Databases. 9.3 Tools for Analysis of Primary Structures. 9.4 Tertiary Structure Databases. 9.5 Programs for Analysis and Visualization of Tertiary Structure Databases. 9.6 Homology Modelling. References. Chapter 10 Proteomics. 10.1 Electrophoresis in Proteomics. 10.2 Mass Spectrometry in Proteomics. 10.3 Chip Technologies in Proteomics. 10.4 Post-Translational Modification Proteomics. Further Reading. References. Appendix 1 SI Units. Appendix 2 The Fourier Transform. Index.

Customer Reviews

Textbook
By: D Sheehan
Media reviews

an excellent textbook...
--Microbiology Today, February 2001

 

Current promotions
Backlist BargainsThe Mammal SocietyOrder your free copy of our 2018 equipment catalogueBritish Wildlife