To see accurate pricing, please choose your delivery country.
 
 
United States
£ GBP
All Shops

British Wildlife

8 issues per year 84 pages per issue Subscription only

British Wildlife is the leading natural history magazine in the UK, providing essential reading for both enthusiast and professional naturalists and wildlife conservationists. Published eight times a year, British Wildlife bridges the gap between popular writing and scientific literature through a combination of long-form articles, regular columns and reports, book reviews and letters.

Subscriptions from £33 per year

Conservation Land Management

4 issues per year 44 pages per issue Subscription only

Conservation Land Management (CLM) is a quarterly magazine that is widely regarded as essential reading for all who are involved in land management for nature conservation, across the British Isles. CLM includes long-form articles, events listings, publication reviews, new product information and updates, reports of conferences and letters.

Subscriptions from £26 per year
Academic & Professional Books  Organismal to Molecular Biology  Biochemistry & Molecular Biology

Physical Principles in Sensing and Signaling With an Introduction to Modeling in Biology

By: Robert G Endres(Author)
184 pages, 69 b/w illustrations
Physical Principles in Sensing and Signaling
Click to have a closer look
Select version
  • Physical Principles in Sensing and Signaling ISBN: 9780199600649 Paperback Jan 2013 Not in stock: Usually dispatched within 6 days
    £36.49
    #201690
  • Physical Principles in Sensing and Signaling ISBN: 9780199600632 Hardback Jan 2013 Not in stock: Usually dispatched within 6 days
    £76.99
    #201689
Selected version: £36.49
About this book Contents Customer reviews Biography Related titles

About this book

Although invisible to the bare eye, bacterial cells are large enough to make complex decisions. Cells are composed of thousands of different molecular species including DNA, proteins, and smaller molecules, allowing them to sense their environment, to process this information, and to respond accordingly. Such responses include expression of genes or the control of their movement. Despite these properties, a living cell exists in the physical world and follows its laws. Keeping this in mind can help answer questions such as how cells work and why they implement solutions to problems the way they do.

Applying physical principles in biology allows researchers to solve challenging problems at the interface between biology and the physical sciences, including how accurately biological cells can sense chemicals in their environment, how cells encode physical stimuli in biochemical pathways, or how cells amplify signals and adapt to persistent stimulation. In Physical Principles in Sensing and Signaling, the reader is introduced to this fascinating topic without the need for extensive mathematical details or huge prior knowledge in biological physics.

Contents

1: Preface
2: Introduction
3: Physical concepts
4: Mathematical tools
5: Chemotaxis in bacterium Escherichia coli
6: Signal amplification and integration
7: Robust precise adaptation
8: Polar receptor localization and clustering
9: Accuracy of sensing
10: Motor impulse response
11: Optimization of pathway
12: 'Seeing' like a bacterium
13: Beyond E. coli chemotaxis

Customer Reviews

Biography

At Imperial College Robert Endres heads the Biological Physics Group. Recently he won the prestigious ERC Strating Grant award. Before moving to the United Kingdom, Robert was a postdoc with Prof. Ned Wingreen in the Molecular Biology Department at Princeton University, where his main research accomplishments were the understanding of the remarkable signalling properties of bacterial chemotaxis and the atomistic prediction of protein-DNA binding sites.

By: Robert G Endres(Author)
184 pages, 69 b/w illustrations
Media reviews

"This book organizes and communicates an amazing amount of biophysics using bacterial chemotaxis as an organizing theme. Endres, a leading researcher in cell signaling, writes in an accessible way and coherently covers a vast range of topics – e.g. diffusion, noise, allostery, membrane energetics, information theory, optimization – with crossover appeal to biologists, physicists, and engineers. This work is ideal for senior undergraduates or graduate students with an interest in the exploding field of quantitative biology."
– Ned Wingreen, Molecular Biology Department, Princeton University

Current promotions
New and Forthcoming BooksNHBS Moth TrapBritish Wildlife MagazineBuyers Guides