To see accurate pricing, please choose your delivery country.
United States
All Shops

British Wildlife

8 issues per year 84 pages per issue Subscription only

British Wildlife is the leading natural history magazine in the UK, providing essential reading for both enthusiast and professional naturalists and wildlife conservationists. Published eight times a year, British Wildlife bridges the gap between popular writing and scientific literature through a combination of long-form articles, regular columns and reports, book reviews and letters.

Subscriptions from £33 per year

Conservation Land Management

4 issues per year 44 pages per issue Subscription only

Conservation Land Management (CLM) is a quarterly magazine that is widely regarded as essential reading for all who are involved in land management for nature conservation, across the British Isles. CLM includes long-form articles, events listings, publication reviews, new product information and updates, reports of conferences and letters.

Subscriptions from £26 per year
Academic & Professional Books  Organismal to Molecular Biology  Genetics & Genomics

Why DNA? From DNA Sequence to Biological Complexity

By: Andrew Travers(Author)
219 pages, 8 plates with colour photos and colour illustrations; b/w photos, b/w illustrations
Why DNA?
Click to have a closer look
Select version
  • Why DNA? ISBN: 9781107697522 Paperback Feb 2022 Not in stock: Usually dispatched within 6 days
  • Why DNA? ISBN: 9781107056398 Hardback Feb 2022 Not in stock: Usually dispatched within 6 days
Selected version: £19.99
About this book Contents Customer reviews Biography Related titles

About this book

Information is central to the evolution of biological complexity, a physical system relying on a continuous supply of energy. Biology provides superb examples of the consequent Darwinian selection of mechanisms for efficient energy utilisation. Genetic information, underpinned by the Watson-Crick base-pairing rules is largely encoded by DNA, a molecule uniquely adapted to its roles in information storage and utilisation.Why DNA? addresses two fundamental questions. Firstly, what properties of the molecule have enabled it to become the predominant genetic material in the biological world today and secondly, to what extent have the informational properties of the molecule contributed to the expansion of biological diversity and the stability of ecosystems. The author argues that bringing these two seemingly unrelated topics together enables Schrödinger's What is Life?, published before the structure of DNA was known, to be revisited and his ideas examined in the context of our current biological understanding.



1. The perennial question
2. The nature of information – information, complexity and entropy
3. DNA – the molecule
4. The evolution of biological complexity
5. Cooperating genomes
6. DNA, information and complexity
7. Origins
8. The complexity of societies
9. Why DNA – and not RNA?

General reading and bibliography

Customer Reviews


Andrew Travers is an Emeritus Scientist at the Medical Research Council Laboratory of Molecular Biology (MRC LMB) and a Visiting Scientist in the Department of Biochemistry at the University of Cambridge. His research focuses on the use of the genetics and biochemistry of bacteria and Drosophila to study the mechanisms of chromatin folding and unfolding. He started his academic career at the MRC LMB before spending two years as a post-doc in Jim Watson's lab at Harvard University, where he co-discovered the first of the RNA polymerase sigma factors.

By: Andrew Travers(Author)
219 pages, 8 plates with colour photos and colour illustrations; b/w photos, b/w illustrations
Media reviews

"The essence of the book is in its title. The DNA structures and topology are described so clearly that the reader perceives these intricacies as pure evolutionary elegance, and understands WHY it is only in its balance of stability and agility that life could have started its journey. This book explains how DNA has become the fascinating prism, made of a fabric of complexity and information, into which the living reflects itself. My opinion is passionate because I have been thinking about the same problems for decades, and here I find many of the answers. Especially: what makes DNA so unique? It is a text that I keep reading over again."
– Ernesto Di Mauro, IBPM, National Research Council, Rome

"In What Is Life? Schrödinger conjectured that, in animate matter, order is derived from order, foreshadowing the discovery of DNA structure. Why DNA? is about this molecule and its dual information content – in linear genetic code and in thermodynamics of three-dimensional DNA structures. It addresses how DNA's intrinsic order led to complex, highly ordered living organisms, in a world that strives towards disorder. Why would DNA supplant RNA in carrying hereditary information during biological evolution? Why did multicellular organisms emerge, since natural selection favours the fittest, such as simple bacteria? What is complexity, and what has it to do with Bayesian logic? How do complexity, information and energy interrelate? This is a succinct discourse on Schrödinger's question, expanding from molecular interactions and genome cooperation to ecological systems and societal evolution. A must-read for biology scholars, and anyone interested in life's origins, biological evolution and the interface of biology and physics."
– Georgi Muskhelishvili, Agricultural University of Georgia, Tbilisi

Current promotions
Field Guide SaleNHBS Moth TrapNew and Forthcoming BooksBuyers Guides