Um genaue Preise zu sehen, wählen Sie bitte Ihr Lieferland.
 
 
United States
£ GBP
Alle Kategorien
Important Notice for US Customers

British Wildlife

8 issues per year 84 Seiten per Ausgabe Nur im Abonnement erhältlich

British Wildlife is the leading natural history magazine in the UK, providing essential reading for both enthusiast and professional naturalists and wildlife conservationists. Published eight times a year, British Wildlife bridges the gap between popular writing and scientific literature through a combination of long-form articles, regular columns and reports, book reviews and letters.

Abonnement ab £33 im Jahr

Conservation Land Management

4 Auflagen im Jahr 44 Seiten Nur im Abonnement erhältlich

Conservation Land Management (CLM) ist ein Mitgliedermagazin und erscheint viermal im Jahr. Das Magazin gilt allgemein als unverzichtbare Lektüre für alle Personen, die sich aktiv für das Landmanagement in Großbritannien einsetzen. CLM enthält Artikel in Langform, Veranstaltungslisten, Buchempfehlungen, neue Produktinformationen und Berichte über Konferenzen und Vorträge.

Subscriptions from £26 per year
Akademische und professionelle Bücher  Reference  Data Analysis & Modelling  Data Analysis & Statistics

Introduction to Probability With R

Textbook
By: Kenneth Baclawski
363 pages, Figs, illus, tabs
Introduction to Probability With R
Click to have a closer look
  • Introduction to Probability With R ISBN: 9781420065213 Hardback Jan 2008 Not in stock: Usually dispatched within 1 week
    £115.00
    #171413
Price: £115.00
About this book Contents Customer reviews Related titles

About this book

Based on the popular probability course by Gian-Carlo Rota of MIT, Probability and Random Processes with R provides a calculus-based introduction to probability. The text systemically motivates and organizes the standard distributions that most often occur in probability using physical processes. Presenting a probabilistic approach that builds on other approaches such as geometry and physical processes, the book addresses sets, events, and probability; finite processes; random variables; statistics and normal distribution; conditional probability; the Poisson process; entropy and information; Markov chains; Markov processes; Bayesian networks; and the Bayesian web. Various exercises and examples compare different perspectives.

Contents

FOREWORD PREFACE Sets, Events, and Probability The Algebra of Sets The Bernoulli Sample Space The Algebra of Multisets The Concept of Probability Properties of Probability Measures Independent Events The Bernoulli Process The R Language Finite Processes The Basic Models Counting Rules Computing Factorials The Second Rule of Counting Computing Probabilities Discrete Random Variables The Bernoulli Process: Tossing a Coin The Bernoulli Process: Random Walk Independence and Joint Distributions Expectations The Inclusion-Exclusion Principle General Random Variables Order Statistics The Concept of a General Random Variable Joint Distribution and Joint Density Mean, Median and Mode The Uniform Process Table of Probability Distributions Scale Invariance Statistics and the Normal Distribution Variance Bell-Shaped Curve The Central Limit Theorem Significance Levels Confidence Intervals The Law of Large Numbers The Cauchy Distribution Conditional Probability Discrete Conditional Probability Gaps and Runs in the Bernoulli Process Sequential Sampling Continuous Conditional Probability Conditional Densities Gaps in the Uniform Process The Algebra of Probability Distributions The Poisson Process Continuous Waiting Times Comparing Bernoulli with Uniform The Poisson Sample Space Consistency of the Poisson Process Randomization and Compound Processes Randomized Bernoulli Process Randomized Uniform Process Randomized Poisson Process Laplace Transforms and Renewal Processes Proof of the Central Limit Theorem Randomized Sampling Processes Prior and Posterior Distributions Reliability Theory Bayesian Networks Entropy and Information Discrete Entropy The Shannon Coding Theorem Continuous Entropy Proofs of Shannon's Theorems Markov Chains The Markov Property The Ruin Problem The Network of a Markov Chain The Evolution of a Markov Chain The Markov Sample Space Invariant Distributions Monte Carlo Markov Chains appendix A: Random Walks Fluctuations of Random Walks The Arcsine Law of Random Walks Appendix B: Memorylessness and Scale-Invariance Memorylessness Self-Similarity References Index Exercises and Answers appear at the end of each chapter.

Customer Reviews

Textbook
By: Kenneth Baclawski
363 pages, Figs, illus, tabs
Media reviews
! beginners should find the informal and nonthreatening presentation of the basic ideas very useful ! A more advanced student could use the book as an extra source of intriguing mathematical examples, as could an instructor searching for interesting items to throw into a more conventional course. ! a very interesting book ! --Technometrics, May 2009, Vol. 51, No. 2 Generally, I was very impressed with this text. It gives a sold introduction to probability with many interesting applications. One of its strengths is its material on stochastic processes. --Jim Albert, Bowling Green State University, The American Statistician, May 2009, Vol. 63, No. 2 ! a welcome addition. !The book is clearly written and very well-organized and it stems in part from a popular course at MIT taught by the late Gian-Carlo Rota, which was originally designed in conjunction with the author of this book. The book goes well beyond the MIT course in making extensive use of computation and R. ! It would serve as an exemplary test for the first semester of a two-semester course on probability and statistics. Introduction to Probability with R is a well-organized course in probability theory. ! --Journal of Statistical Software, April 2009 This advanced undergraduate textbook is a pleasure to read and this reviewer will definitely consider it next time he teaches the subject. The programming language R is an open-source, freely downloadable software package that is used in the book to illustrate various examples. However, the book is well usable even if you do not have the time to include too much programming in your class. All programs of the book, and several others, are downloadable from the book's website. ! the exercises of this book are a lot of fun! They often have some historical background, they tell a story, and they are never routine. Every chapter also starts with historical background, helping the student realize that this subject was developed by actual people. All classic topics that you would want to cover in an introductory probability class are covered. ! Another aspect in which the book stands out among the competition is that discrete probability gets its due treatment. ! --Miklos Bona, University of Florida, MAA Reviews, June 2008 !a broad spectrum of probability and statistics topics ranging from set theory to statistics and the normal distribution to Poisson process to Markov chains. The author has covered each topic with an ample depth and with an appreciation of the problems faced by the modern world. The book contains a rich collection of exercises and problems ! an excellent introduction to the open source software R is given in the book. ! This book showcases interesting, classic puzzles throughout the text, and readers can also get a glimpse of the lives and achievements of important pioneers in mathematics. ! --From the Foreword, Tianhua Niu, Brigham and Women's Hospital, Harvard Medical School, and Harvard School of Public Health, Boston, Massachusetts, USA
Current promotions
Great GiftsNew and Forthcoming BooksBritish Wildlife Magazine SubscriptionField Guide Sale 2025