To see accurate pricing, please choose your delivery country.
 
 
United States
£ GBP
All Shops

British Wildlife

8 issues per year 84 pages per issue Subscription only

British Wildlife is the leading natural history magazine in the UK, providing essential reading for both enthusiast and professional naturalists and wildlife conservationists. Published eight times a year, British Wildlife bridges the gap between popular writing and scientific literature through a combination of long-form articles, regular columns and reports, book reviews and letters.

Subscriptions from £33 per year

Conservation Land Management

4 issues per year 44 pages per issue Subscription only

Conservation Land Management (CLM) is a quarterly magazine that is widely regarded as essential reading for all who are involved in land management for nature conservation, across the British Isles. CLM includes long-form articles, events listings, publication reviews, new product information and updates, reports of conferences and letters.

Subscriptions from £26 per year
Academic & Professional Books  Reference  Physical Sciences  Cosmology & Astronomy

Numerical Methods in Astrophysics An Introduction

Textbook
By: P Bodenheimer, G Laughlin, M Rozyczka and H Yorke
350 pages, diagrams
Publisher: Taylor & Francis
Numerical Methods in Astrophysics
Click to have a closer look
  • Numerical Methods in Astrophysics ISBN: 9780750308830 Hardback Dec 2006 Not in stock: Usually dispatched within 1-2 weeks
    £99.99
    #162407
Price: £99.99
About this book Contents Customer reviews Related titles

About this book

Numerical methods have become a major research tool in astrophysics, and astrophysics students need to be fully conversant with a variety of mathematical and computational techniques. This highly practical guide discusses some of the major problems in astrophysics that have to be solved numerically, requiring hydrodynamics, MHD and radiative transfer for their solution. It summarizes the advantages and disadvantages of various techniques that could be used on a given problem, and includes examples from recently published solutions and basic codes, which can be developed into research tools. The book includes a full range of sample problems for the student, making it an ideal course text.

Contents

Basic Equations The Boltzmann Equation Conservation Laws of Hydrodynamics The Validity of the Continuous Medium Approximation Eulerian and Lagrangian Formulation of Hydrodynamics Viscosity and Navier--Stokes Equations Radiation Transfer Conducting and Magnetized Media Numerical Approximations to Partial Differential Equations Numerical Modeling with Finite-Difference Equations Difference Quotient Discrete Representation of Variables, Functions, and Derivatives Stability of Finite-Difference Methods Physical Meaning of Stability Criterion A Useful Implicit Scheme Diffusion, Dispersion, and Grid Resolution Limit Alternative Methods N-Body Particle Methods Introduction to the N-Body Problem Euler and Runge--Kutta Methods The Description of Orbital Motion in Terms of Orbital Elements The Few-Body Problem: Bulirsch--Stoer Integration Lyapunov Time Estimation Symplectic Integration N-Body Codes for Large N Close Encounters and Regularization Force Calculation: The Tree Method Force Calculation: Fast Fourier Transforms Smoothed Particle Hydrodynamics Rudimentary SPH Colliding Planets: An SPH Test Problem Necessary Improvements to Rudimentary SPH Summary Stellar Evolution Equations for Equilibrium of a Star Radiative, Conductive, and Convective Energy Transfer Change in Chemical Composition Boundary Conditions An Implicit Lagrangian Technique: Henyey Method Physics Packages Examples Grid-Based Hydrodynamics Flow Discontinuities and How to Handle Them A Simple Lagrangian Hydrocode Basic Eulerian Techniques Adaptive Mesh Refinement A Multidimensional Eulerian Hydrocode 2 1/2-Dimensional Simulations Examples Poisson Equation Poisson Solutions: I Poisson Solutions: II Test of the Potential Magnetohydrodynamics Basic Assumptions and Definitions MHD Source Terms Solving the Induction Equation Initial and Boundary Conditions Examples and Exercises Concluding Remarks Radiation Transport Solving the Ray Equation for the Continuum Solution for Frequency-Dependent Radiation Transfer in Spherical Symmetry Frequency-Dependent Stellar Atmospheres Technique for Flux-Limited Diffusion in Two Space Dimensions Example: Spectrum of a Rotating, Collapsing Object Example: 3-D Calculations of the Solar Photosphere Numerical Codes Radiation Transfer Stellar Evolution One-Dimensional Lagrangian Hydro ZEUS: 3-D Hydrodynamics N-Body Codes Smoothed Particle Hydrodynamics INDEX References appear in each chapter.

Customer Reviews

Textbook
By: P Bodenheimer, G Laughlin, M Rozyczka and H Yorke
350 pages, diagrams
Publisher: Taylor & Francis
Current promotions
New and Forthcoming BooksNHBS Moth TrapBritish Wildlife MagazineBuyers Guides